Overview 개관

- New South Wales (NSW) offers a range of opportunities for discoveries of rare earth elements (REE).

- Rocks known to contain elevated concentrations of rare earth elements in NSW include:
 - Trachytes such as those that host the Dubbo Zirconia Project (Toongi)
 - Nephelinite and carbonatite magmatic rocks
 - Highly fractionated granitoids and pegmatites
 - Pliocene heavy mineral sands deposits that contain monazite (for example the Snapper and Ginkgo mines).

- The potential for rare earth elements in NSW is largely untested.

- Rare earth elements comprise a series of 15 natural metallic elements ranging in atomic number from 57 (lanthanum) to 71 (lutetium). Also generally included for geological purposes are yttrium (which behaves as a rare earth element), scandium and thorium. Compounds of rare earth elements have numerous uses, such as in the production of automotive catalytic converters, optical lenses, lighting and powerful magnets.
Geological setting

Prospective rocks for rare earth elements include:

- Potassic rocks, carbonatite and nepheline rocks
- Highly fractionated, metaluminous and peralkaline I-type granitoids that can be enriched in incompatible elements. Hydrothermal activity, commonly involving chlorine and fluorine associated with the intrusions, can concentrate rare earth elements.
- Surficial clays and laterite with elevated concentrations of rare earth elements.

Bastnaesite is the most important mineral as a source of rare earth elements. Other important source or tracer minerals include parsite, monazite and xenotime.

Project highlights

Dubbo Zirconia Project (Toongi), about 275 km northwest of Sydney, is a world-class resource containing zirconium (ZrO₂), hafnium (HfO₂), niobium (Nb₂O₅), tantalum (Ta₂O₅), yttrium (Y₂O₅) and rare earth elements. Toongi is currently in construction, with production anticipated to commence in 2018. The deposit is associated with a hydrothermally altered pipe-like alkaline (trachyte) intrusion of Jurassic age.

Narraburra, 375 km west of Sydney, contains zirconium oxide, yttrium oxide, rare earth oxides, niobium oxide and thorium oxide, hosted by deeply weathered and fresh leucogranite.

Exploration targets

The Lachlan Orogen, recognised as a world-class mineral province for metalliferous deposits, also hosts important rare earth element deposits.

Exploration opportunities for rare earth elements include highly fractionated metaluminous and peralkaline I-type granitoids and associated skarns (e.g. at Narraburra, Jindera and Whipsticke).

Latite–trachyte intrusions, mainly of Jurassic age, are scattered widely across NSW. These intrusions have potential for Toongi-style deposits. Latrites associated with the intrusions have potential to host elevated concentrations of rare earth elements.

The New England Orogen hosts highly fractionated, relatively oxidised and metaluminous I-type granitoids of Permain to Early Triassic age. The Mole Granite, north east of Inverell, is associated with many polymetallic mineral occurrences, some of which contain monazite with elevated rare earth elements and thorium. Other prospective rocks in the area include the Dumboy-Grain and Gilgai granitoids.

In the Proterozoic Curnamona Craton, highly anomalous concentrations of rare earth elements occur in sulfide-bearing deposits including the famous Broken Hill base metal deposit. Granitoids (e.g. Mundi-Mundi-type) and fluorine-rich pegmatites can also be anomalous in rare earth elements.

The Delamerian Orogen is a greenfields terrain that offers many opportunities for rare earth elements including oxidised mafic carbonatite and nepheline syenite.

The Murray Basin in the southwest of the state is a globally significant heavy mineral sands province, with extensive Pliocene beach placer deposits that contain rare earth element-bearing monazite. The economic potential for monazite associated with heavy mineral sands extraction has not been fully established.

Contact: mra.info@industry.nsw.gov.au | +61 2 4931 6689

Disclaimer: The information contained in this publication is based on knowledge and understanding at time of printing (July 2017), using publicly available information. Because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date. The information contained in this publication may not be or may not be used to be or may not be used to be aligned with government policy nor does the publication indicate or imply government policy. No warranty about the accuracy, currency or completeness of any information contained in this document is expressed (including, without limitation, any information in the document provided by third parties). While all reasonable care has been taken in the compilation, to the extent permitted by law, the State of New South Wales (including the NSW Department of Planning and Environment) accepts no liability for the accuracy or completeness of the information, or for any injury, loss, or damage whatsoever (including without limitation liability for negligence and consequential loss) suffered by any person acting, or purporting to act, in reliance upon anything contained herein. Users should rely upon their own advice, skills, interpretation and experience in applying information contained in this publication. The product trade names in this publication are supplied on the understanding that no preference between equivalent products is intended and that the inclusion of a product name does not imply endorsement by the Department over any equivalent product.

Further information

The Advanced Mineral Projects & Exploration Highlights in NSW Map summarises recent exploration activities and ore reserve/resource announcements. This map is updated every six months and is available at www.resourcesandenergy.nsw.gov.au